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The orientation of the nematic director field under the action of an external time-dependent
field is theoretically investigated as a mixed Dirichlet–Neumann boundary-value problem.
This mathematical problem represents the situation in which a nematic liquid crystal sample
is limited by two inhomogeneous flat surfaces, separated by a distance d, on which the
anchoring is weak. By considering the one-constant approximation and a parabolic
approximation for the surface energy, the initial conditions and boundary-value problem
for the profile of the tilt angle can be analytically solved even in the case in which the surfaces
are not identical, which represents the more general situation. The results are valid for small
deviations from the homeotropic orientation and for h2H%1, where h is the actual tilt angle
and H characterizes the easy direction imposed by the surface, and can be relevant to
investigation of the molecular orientation in a nematic cell submitted to a small external
voltage.

1. Introduction

Recently, many works have approached boundary-

value problems in connection with molecular orienta-

tion in typical nematic liquid crystal (NLC) cells. The

problems arise in the framework of the elastic con-

tinuum theory for liquid crystalline materials and, in

their mathematical formulation, the variational princi-

ple to minimize the total elastic energy is invoked [1–9].

This total energy depends on the spatial distribution of

the director n, which represents the average molecular

orientation in the cell. The equilibrium configuration

for the director distribution can be influenced by the

orientation imposed by the surface treatment in typical

cells that are usually formed by two flat (treated)

surfaces separated by a distance d, in the shape of a slab

[10–13].

The mixed Dirichlet–Neumann problem in this

context refers to the situation in which the anchoring

of the director at the surfaces is weak, i.e. the surface

energy is a finite quantity. Thus, the total elastic energy

to be minimized is composed by a contribution coming

from the bulk energy added to the surface energies. In

this more difficult mathematical problem, the angles

determining the molecular orientation at the surfaces

are not fixed by the boundary conditions. Particular

cases obtained as limiting situations of this more general

problem have been extensively discussed in recent years

[14–20]. In this paper, we present the complete

analytical solutions for this class of problems in terms

of Green’s functions, by taking into account the usual

contributions that intervene in real physical situations.

For this reason, the analysis is carried out by consider-

ing that the cell is subjected to a time-dependent

external electric field, the viscous torque is taken into

account also when the surfaces, which are not identical,

are characterized by a space–time-dependent distribu-

tion of the easy axes and, as outlined above, the

situation is of weak anchoring. On the other hand, the

deformations are restricted to remain in a plane, i.e. we

consider only splay–bend deformations, in the one-

constant approximation; furthermore, the surface

energy is the parabolic approximation for the usual

Rapini–Papoular expression [21]. In this manner, the

results are valid for small deviations from the home-

otropic orientation, i.e. for h%1 and for h2H%1, where

h is the actual value of tilt angle and H%1 characterizes

the easy direction imposed by the surface. Furthermore,

the analysis could be relevant to a cell in which the

applied field is very small when compared with the

Fréedericksz threshold field to induce deformations in

the nematic structure [22, 23].

This paper is organized as follows. In section 2 the

total energy and the fundamental equations are

established. In section 3 the general solution of the

mixed Dirichlet–Neumann problem is given by means

of the Green function method. To use the formalism
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developed in this section, some illustrative examples are

discussed in section 4. Some general conclusions are

discussed in section 5.

2. Total energy

The elastic energy density of a NLC cell is given by the

Frank elastic energy density [1, 2, 25, 26] which, for

splay–bend distortions and neglecting surface-like

terms, reduces to

f ~
1

2
K11

~++:n
� �2

zK33 n| ~++|n
� �h i2

� �
, ð1Þ

in which n is a unit vector representing the average

molecular orientation of the nematic phase, called

director. Furthermore, K11 and K33, are, respectively,

the bulk elastic constant of splay and bend.

In this situation, the director is everywhere parallel to

the (x2z) plane, i.e. n5n(x, z). The Cartesian reference

frame is chosen with the z-axis normal to the surfaces,

located at z5¡d/2. The x-axis is parallel to the

direction along which the surface tilt angle is expected

to change and is such that n5sin[h(x, z)]i + cos[h(x, z)]k,

where i and k are the unit vectors parallel to the x- and

z-axes, respectively (see figure 1).

When the sample is submitted to an external time-

dependent electric field E(t), parallel to the z-axis,

another contribution to the elastic energy density,

having the form

fE~{
1

2
ea n:Eð Þ2~{

1

2
eaE tð Þ2cos2 h, ð2Þ

has to be added to f to complete the bulk elastic energy

density. In (2), ea5eI2eH (I and H refer to the

direction of n) is the dielectric anisotropy. The surface

energy is usually assumed in the form proposed by

Rapini–Papoular [21], written here in the parabolic

approximation as

fS~
1

2
W+ sin2 h+{H+ð Þ& 1

2
W+ h+{H+ð Þ2, ð3Þ

when the actual values of the tilt angle at the surfaces,

i.e. h¡5h(x, z5¡d/2, t) are close to the angles defining

the easy directions H¡ on the surfaces characterized by

the anchoring energies W¡. In the one-constant

approximation, K115K335K, the total energy of the

cell, per unit length along y, in the limit of small h, i.e.

for orientations close to homeotropic, is given by

F~

ðz?

{?
dx

ðd=2

{d=2

1

2
K ~++h
� �2

z
ea

2
E2 tð Þh2

� �
dz

z

ðz?

{?

1

2
Wz h xð Þ{Hz xð Þ½ �2zW{ h xð Þ{H{ xð Þ½ �2
h i

dx:

ð4Þ

By minimizing (4), taking into account the viscous

torque [27], we find the equation for the dynamical

evolution of the orientation induced by the electric field

+2h x, z; tð Þ{a2h x, z; tð Þ~ Lh x, z; tð Þ
Lt

, ð5Þ

written in a non-dimensional form by introducing

reduced coordinates xRx/d, zRz/d and a reduced time

tRt/tv, where tv5ld2/K is the viscous relaxation time

and l is an effective viscosity coefficient of the liquid

crystal [27]. In (5) we have introduced the quantity

a2 tð Þ~p
E tð Þ
Ec

� �2

, ð6Þ

in which Ec~p=d
ffiffiffiffiffiffiffiffiffiffiffi
K=ea

p
is the threshold field for the

Fréedericksz transition in the strong anchoring case [1].

The solution of (5) is the function h(x, z; t) subjected to

an initial condition and satisfying appropriated bound-

ary conditions. If these boundary conditions refer to the

case of strong anchoring, the mathematical problem is

the Dirichlet problem; if, on the other hand, they

concern the weak anchoring situation, we have the

mixed Dirichlet–Neumann problem hereafter consid-

ered.

3. Mixed Dirichlet–Neumann problem

Let us address our investigation to the dynamic

reorientation of the nematic director in a cell subjected

to an external time-dependent electric field having

boundary conditions relevant to the case of weak

anchoring. The boundary conditions to be satisfied by

the solution of (5) are

+L+
L
Lz

h x, z; tð Þzh x, z; tð Þ
����
z~+1=2

~H+ x, tð Þ, ð7Þ

where L¡5K/(W¡d) are the extrapolation lengths

Figure 1. Nematic sample in the shape of a slab of thickness
d. The surfaces are characterized by anchoring energies W¡

and by a space–time-dependent distribution of easy axes:
H¡(x, t).
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(b5K/W; see [28]) measured in units of the thickness of

the sample. To keep the generality, in the present

analysis we consider the initial condition h(x, z,

0)5h0(x, z). These conditions are very general in the

sense that they take two extrapolation lengths into

account and require that the distribution of easy axes

on the surfaces have a time dependence, in addition to

the spatial dependence accounting for inhomogeneities.

This time dependence in the easy direction describes

the situation in which the easy angle on the surface

may change direction continuously under the action

of some external agent, for instance, by illuminating

a surface covered with some photopolymeric

films. Particular cases of (7) have been worked out in

[20].

To face this more general problem, we use the Fourier

transform and perform the change

h k, z; tð Þ~e
{k2t{

Ð t

0
dta2 tð Þh k, z; tð Þ, ð8Þ

where h k, z; tð Þ~F h x, z; tð Þf g, with

F � � �f g~
ð?

{?
� � � e{ikx dx

denoting the Fourier transform. In this manner, by

using the Fourier transform and (8) in (5) we obtain

L2

Lz2
h k, z; tð Þ~ L

Lt
h k, z; tð Þ, ð9Þ

subjected to the boundary condition

L+
L
Lz

h k, z; tð Þ~h k, z; tð Þ
����
z~+1=2

~F+ k, tð Þ, ð10Þ

with F+ k, tð Þ~H+ k, tð Þek2tz
Ð t

0
dta2 tð Þ and the initial

condition h̄(k, z, 0)5h0(k, z). Now, we apply the

Laplace’s transform in (9) to reduce the partial

differential equation to an ordinary differential equa-

tion and consequently simplify our calculations. By

applying the Laplace transform in (9), we obtain the

non-homogeneous equation

d2

dz2
h k, z; sð Þ{sh k, z; sð Þ~{h0 k, z; sð Þ: ð11Þ

To find the solution for the above equation we use the

Green function approach [29, 30] which makes it possible

to obtain how the system evolves over time and gives the

contribution of the surface to the director field. The

Green function ~GG z, z0; sð Þ ~GG z, z0; sð Þð ~L G z, z0; tð Þf g
where L � � �f g~

Ð?
0
� � � e{st dt is the Laplace transform)

used to obtain the solution of (9) is determined from the

equation

d2

dz2
~GG z, z0; sð Þ{s~GG z, z0; sð Þ~d z{z0ð Þ, ð12Þ

subjected to the boundary condition

L+
d

dz
~GG z, z0; sð Þz~GG z, z0; sð Þ

����
z~+1=2

~0: ð13Þ

After some calculations it is possible to show, by

using (13) and (12), that the solution of (9) is formally

given by

h k, z; sð Þ~{

ð1=2

{1=2

dz0h0 k, z0ð Þ~GG z, z0; sð Þ

{
1

Lz

~GG
1

2
, z; s

	 

~FFz k, sð Þ

{
1

L{

~GG {
1

2
, z; s

	 

~FF{ k, sð Þ,

ð14Þ

where ~FF+ k, sð Þ~L F+ k, tð Þf g; the first term is due to

the initial condition and the last two terms are surface

contributions. Applying the inverse Laplace transform

in (14), we find

h k, z; tð Þ~{

ð1=2

{1=2

dz0h0 k, z0ð ÞG z, z0; tð Þ

{
1

Lz

ðt

0

dtG 1

2
, z; t{t

	 

Fz k, tð Þ

{
1

L{

ðt

0

dtG {
1

2
, z; t{t

	 

F{ k, tð Þ:

ð15Þ

By substituting (15) into (8) and inverting the Fourier

transform, we obtain

h x, z; tð Þ~{

ð1=2

{1=2

dz0h0 x, z0ð ÞG z, z0; tð Þ

{
1

Lz

ðt

0

dt

ð?
{?

dxG 1

2
, z; t{t

	 


|e

Ð t

0
d~ta2 ~tð Þ{

Ð t

0
d~ta2 ~tð Þ~GG x{x; t{tð ÞHz x, tð Þ

{
1

L{

ðt

0

dt

ð?
{?

dxG {
1

2
, z; t{t

	 


|e

Ð t

0
d~ta2 ~tð Þ{

Ð t

0
d~ta2 ~tð Þ~GG x{x; t{tð ÞH{ x, tð Þ:

ð16Þ

where ~GG x, tð Þ~e{x2= 4tð Þ
. ffiffiffiffiffiffiffi

4pt
p

. The Green function for

z0vzƒ 1
2

is

G z, z0; tð Þ~2
X?

n~1

g
{ð Þ

n zð Þg zð Þ
n z0ð Þ

Dn

e{k2
nt, ð17Þ
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and, for { 1
2
ƒzvz0, it is

G z, z0; tð Þ~2
X?
n~1

g
zð Þ

n zð Þg {ð Þ
n z0ð Þ

Dn

e{k2
nt, ð18Þ

where

g +ð Þ
n zð Þ~sin kn

1

2
+z

	 
� �
zL+kn cos kn

1

2
+z

	 
� �
ð19Þ

and

Dn~ 1z LzzL{ð Þ{LzL{k2
n

� �
cos knð Þ

{ LzzL{ð Þz2LzL{½ �kn sin knð Þ:
ð20Þ

The eigenvalues kn are the roots of the equation

tan kn~
kn LzzL{ð Þ
k2

nLzL{{1
: ð21Þ

Note that (16) extends the results reported in [20] and,

in the limit L+R0 and L2R0, the situation of strong

anchoring in both surfaces is recovered, but now

incorporating a time dependence on the boundary

condition.

4. Illustrative applications

In this section, we apply the formalism developed in the

preceding sections to find exact solutions of some

representative physical problems in liquid crystals.

4.1. Uniform orientation in the absence of an external
field

The simplest case refers to a(t)50 and h(x, z, 0)50.

Then, the solution (16), by considering H+(x̄)5H0 and

H2(x̄)5H1, will be

h x, z; tð Þ~{
H0

Lz

ðt

0

dtG 1

2
, z; t{t

	 

h x, t{tð Þ

{
H1

L{

ðt

0

dtG {
1

2
, z; t{t

	 

h x, t{tð Þ,

ð22Þ

where

h x, t{tð Þ~ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p t{tð Þ

p
ðz?

{?
dx e{ x{xð Þ2=4 t{tð Þ: ð23Þ

By performing the x̄ integration in (22), we obtain

h x, z; tð Þ~{
H0

Lz

ðt

0

dtG 1

2
, z; t{t

	 


{
H1

L{

ðt

0

dtG {
1

2
, z; t{t

	 

:

ð24Þ

This solution gives the tilt angle profile, in a NLC

sample, for the weak anchoring case in the absence of

an external field. This particular situation could be

realized experimentally by using an electric field to

prepare an initial configuration of the tilt angle, i.e. h(x,

z, 0)5h0(x, z), and, after that, removing the electric field

applied in the system. The relaxation of the liquid

crystal present in the sample is governed by (5) with

a(t)50 which, by preparing the experimental sample

with suitable choice of H0 and H1 and h(x, z, 0), has the

solution given by (22). A particular tilt angle distribu-

tion is shown in figure 2.

4.2. Uniform orientation in the presence of an external
field

As a second example, we consider the system submitted

to an external, constant and small electric field with h(x,

z, 0)50 as in the previous application. Then, the general

solution (16) will be

h x, z; tð Þ~{
H0

Lz

ðt

0

dtG 1

2
, z; t{t

	 

e{a2

0
t{tð Þ

{
H1

L{

ðt

0

dtG {
1

2
, z; t{t

	 

e{a2

0
t{tð Þ:

ð25Þ

where a(t) is given by (6). Equation (25) represents the

tilt angle profile in a nematic sample, in the presence of

a small constant external field, with uniform orientation

of the easy axes. A typical tilt angle distribution is

shown in figure 3 for a particular set of parameters.

4.3. Periodic distribution in the easy axes

Let us consider now two illustrative examples dealing

with periodic distribution of the easy axes. The first case

Figure 2. Tilt angle profile h(x, z, t) for H05p/10 in the upper
surface and H150 in the lower surface. The figure was drawn
for t55.0.
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refers to a step-like distribution and the second case to a

sinusoidal distribution. Both cases are investigated

under the action of a constant and small external field.

The upper surface is supposed to be treated in order to

impose a uniform orientation characterized by H0,

whereas the lower surface is characterized by a periodic

distribution of easy angle in the form H2(x̄), as

represented in figure 4.

We consider first the case in which

Hz xð Þ~H0 and H{ xð Þ~
H1, 0ƒxƒa,

H2, aƒxƒ2a,

�
ð26Þ

that can be written as

Hz xð Þ~H0

H{ xð Þ~H1z H2{H1ð Þ
X?

n~0

{1ð ÞnF n, x½ �,
ð27Þ

where

F n, x½ �~ H x{nað ÞzH {x{ nz1ð Það Þ½ �

and H(x̄) is the Heaviside’s function. By using the

boundary conditions (27) in (16) and h(x, z, 0)50 one

obtains the closed solution

h x, z; tð Þ~{
H0

Lz

ðt

0

dtG 1

2
, z; t{t

	 

e{a2

0
t{tð Þ

{
H1

L{

ðt

0

dtG {
1

2
, z; t{t

	 

e{a2

0
t{tð Þ

{
H2{H1

2L{

X?

m~0

{1ð Þm

ðt

0

dtG {
1

2
, z; t{t

	 

e{a2

0
t{tð Þ

| 1{Erf
ma{x

2
ffiffiffiffiffiffiffiffiffi
t{t
p

	 
� ��

z 1{Erf
xzmaza

2
ffiffiffiffiffiffiffiffiffi
t{t
p

	 
� ��
,

ð28Þ

representing the profile of the tilt angle. In figure 5, the

behaviour of h(x, z, t) is shown for illustrative purpose.

Finally, let us consider the periodic distribution of

easy axes in the form

Hz xð Þ~H0 and H{ xð Þ~H1 sin qx½ �, ð29Þ

where q52p/l, with l being the periodicity of the

distribution. By using the boundary conditions (29) in

(16) and h(x, z, 0)50 one obtains

Figure 3. Tilt angle profile h(x, z, t) for H05p/10 in the upper
surface and H150 in the lower surface. The figure was drawn
for a052.0, L+50.5, L250.3 and t52.0.

Figure 4. Nematic sample of thickness d whose upper surface
is characterized by a uniform distribution of the easy axis
whereas the lower surface is characterized by a periodic
distribution of easy axis. The spatial periodicity is l.

Figure 5. Tilt angle distribution h(x, z, t) given by (28), drawn
for H05p/10, H15p/15, H252p/15, a051.0, L+50.5, L250.3
and t52.0.
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h x, z; tð Þ~{
H0

Lz

ðt

0

dtG 1

2
, z; t{t

	 

e{a2

0
t{tð Þ

z
H1

L{

ðt

0

dtG {
1

2
, z; t{t

	 

e{ a2

0
zq2ð Þ t{tð Þ

sin qx½ �:

ð30Þ

In figures 6 (a) and 7 (a), h(x, z, t) is shown for some

particular values of the parameters. In figure 6 (a), the

periodicity is large and the entire sample tends to be

distorted, but a more uniform orientation can be found at

the upper surface. In figure 7 (a), the periodicity of the

distribution of the easy axes is small, the distortion is

strongly localized at the lower surface and decreases as one

moves away from it. The general solution (30) in the limit

L+R‘ reduces to

h x, z; tð Þ~ 2H1

L{

X?
n~1

f{ kn, zð Þ

1{e{ k2
nza2

0
zq2ð Þt

k2
nza2

0zq2

 !
sin qx½ �,

ð31Þ

where

f{ kn, zð Þ~ g
zð Þ

n zð Þ
Un

kn cos kn½ � ð32Þ

with g
zð Þ

n zð Þ given by (19), and

Un~ 1{L{k2
n

� �
cos knð Þ{ 1z2L{½ �kn sin knð Þ: ð33Þ

The case considered in figure 6 (b) refers to a

situation in which there is no anchoring at the upper

surface. As the periodicity is large, the sample is

Figure 6. (a) Tilt angle profile h(x, z) for t55, with q52p/
l50.05p, H05H15p/10, L+50.5, L250.3 and a520.0L+. (b)
The same as (a), but for the case of no anchoring at the upper
surface, i.e. L+R‘.

Figure 7. (a) Tilt angle profile h(x, z) for t55, with q52p/
l50.75p, H05H15p/10, L+50.5, L250.3 and a520.0L+. (b)
The same as (a), but for the case of no anchoring at the upper
surface, i.e. L+R‘.
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completely distorted: the entire sample orientation

follows the orientation imposed by the lower surface,

whose extrapolation length is about one-third of the

thickness of the sample. Finally, a similar situation is

depicted in figure 7 (b), but the periodicity is smaller

than that shown in figure 6 (b). For this reason, the

amplitude of the distortion is small but the sample is

completely distorted.

The formalism we have developed can be used to

analyse many situations in closed analytical form. Here,

we have focused only on some particular examples to

illustrate the usefulness of the approach in facing real

situations. A link between these calculations and

experimental results can be made by considering the

optical path difference, which allows one to investigate

the orientational states of the system. When h(x, z) is

known, as in the formalism we have proposed above,

the physical properties of a NLC sample can be

explored. For instance, the optical path difference Dl,

between the ordinary and extraordinary ray [1], is given

by

Dl~
1

L

ðL=2d

{L=2d

ð1=2

{1=2

Dn hð Þdx dz~
1

2
n0R dSh2T, ð34Þ

where

Sh2T~
d

L

ðL=2d

{L=2d

ð1=2

{1=2

h2 x, z; tð Þdx dz, ð35Þ

is the average square tilt angle, evaluated over a typical

length L, connected with the diameter of the light beam.

Moreover, R512(n0/ne)
2, where n0 and nc are the

ordinary and extraordinary refractive indices, respec-

tively. This completes the formalism to determine, in an

exact manner, the tilt angle profile and the dynamics of

its orientation under the action of an external field in a

situation in which only splay–bend distortion is allowed

for the system.

5. Summary and conclusion

The dynamics of the director reorientation have been

investigated for a NLC sample of thickness d, under the

action of an external time-dependent field, when only

splay–bend deformation is allowed in the system. The

general results, given in terms of Green’s function, have

been applied to some illustrative examples. In one of

these examples, one surface is characterized by a

periodic distribution of easy axes. The particular

importance of the present approach is to consider a

space–time-dependent distribution of the easy axes,

because, in this general situation, the spatial inhomo-

geneities of the surface as well as the evolution with time

of the easy direction can be taken into account in a

unified way. This general situation can be relevant for

those systems in which the surfaces are covered by

photopolymeric films whose orientation is fully deter-

mined by the previous treatment of the polymer.

Therefore, by illumination, the configuration at the

surface can be controlled externally while the dynamics

of the director can be exactly determined for small

distortions near the threshold field, when an external

time-dependent electric field is applied on the system.
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